

Seasonal Global Biospheres

SeaWiFS Climatologies (1997-2002)

Decadal Scale Biological Variability

Quantifying Phytoplankton from Space: Chl-a Algorithm

Chlorophyll-a

NASA Ocean Color Accuracy Goals

- Sensor radiometric calibration
 ±0.5% absolute
- Water-leaving radiances
 ±5% absolute
- Chlorophyll-a $\pm 35\%$ over range of 0.05-50.0 mg/m³

Note: NPOESS Climate Data Record accuracy goals are different.

SeaWiFS, MODIS, & VIIRS

SeaWiFS

- Rotating telescope
- 412, 443, 490, 510, 555, 670, 765, 865 nm bands
- 12 bit digitization truncated to 10 bits on spacecraft
- 4 focal planes, 4 detectors/band, 4 gain settings, bilinear gain configuration
- Polarization scrambler: sensitivity at 0.25% level
- Solar diffuser (daily observations)
- Monthly lunar views at 7° phase angle via pitch maneuvers

NPP/VIIRS (Ocean Color)

- SeaWiFS-like rotating telescope
- MODIS-like focal plane arrays (16 detectors/band)
- 12 bit digitization
- No polarization scrambler
- Solar diffuser with stability monitor
- 7 OC bands (412, 445, 488, 555, 672, 746, 865 nm)
 - Dual gains except 746 nm (single gain)
- Monthly lunar views at 55° phase angle via space view port with roll maneuvers (feasible, but not approved)

MODIS (Ocean Color)

- Rotating mirror
- 413, 443, 488, 531, 547, 667, 678, 748, 870 nm bands
 - Single gain (NIR saturation)
- 12 bit digitization
- 4 focal planes (7-11 bands each)
 - OC Visible: 412-547 nm (5 bands-10 detectors each)
 - OC NIR: 667-869 (4 bands-10 detectors each)
- No polarization scrambler: sensitivity at ~3% level
- Spectral Radiometric Calibration Assembly (SRCA)
- Solar diffuser (observations every orbit), Solar Diffuser Stability Monitor (SDSM)
- Monthly lunar views at 55° phase angle via space view port

"Nominal" common bands

Sensor designs & performance are never identical.

Calibration/Validation Paradigm

Program Elements:

- **Laboratory** prelaunch sensor calibration & characterization
- On-orbit solar and lunar observations are used to track changes in sensor response
- Field comparison of satellite data retrievals to in-water, above-water and atmospheric observations
 - Vicarious calibration adjust instrument gains to match water-leaving radiances
 - Product validation (water-leaving radiances, chl-a, etc.)

Ocean Color Sensor Calibration Strategy

SeaWiFS Temporal Calibration

SeaWiFS	SeaWiFS
Band	λ (nm)
1	412
2	443
3	490
4	510
5	555
6	670
7	765
8	865

MODIS Temporal Degradation at 412 nm Lunar and Solar Calibration Trends

OC Atmospheric Correction Basics

- Methodology from Gordon & Wang (1994)
 - Assumes NIR reflectance is negligible
 - Models Rayleigh multiple scattering (plane-parallel model)
 - Employs suite of 12 aerosol models (next slide)
 - Uses ratio of NIR aerosol radiances to determine aerosol model
 - Aerosol model extrapolation to visible bands to estimate aerosol radiance
- Glint and white cap radiances modeled using NCEP surface winds
- Gas absorption: Ozone, NO₂ (implemented, not operational), O₂ (SeaWiFS 765 nm only)

OC Atmospheric Correction Basics

$$L_{t} = [L_{r} + L_{a} + T_{v}L_{g} + t_{dv} (L_{f} + L_{w})] t_{gv} t_{gs} f_{p}$$

L_t: measured top of atmosphere radiance

L_r: Rayleigh radiance

L_a: aerosol radiance

T_v: direct transmittance (sensor view)

L_g: glint radiance

t_{dv}: diffuse transmittance (sensor view)

L_f: foam radiance

L_w: water-leaving radiance

t_{gv}: absorbing gas transmittance (ozone; sensor view path)

t_{gv}: absorbing gas transmittance (ozone; solar path)

f_p: sensor polarization sensitivity correction factor

All terms _-dependent

Aerosol Models for Atmospheric Correction

• Gordon & Wang's aerosol models based on Shettle and Fenn's (1979) models for tropospheric and oceanic aerosols

-Twelve (12) aerosol models are used in operational processing (#'s refer to relative humidity)

```
-Oceanic
O99
```

- -Maritime (1% oceanic and 99% tropospheric) M99, M90, M70, M50
- -Coastal (0.5% oceanic and 99.5% tropospheric) C99, C90, C70, C50
- -Tropospheric T99, T90, T50

Some Properties of G&W Aerosol Models

Size Distribution

100 c50 c90 0.01 0.10 1.00 10.00 Radius(um)

Phase Function

- Effective radius varies from 0.14 to 4.74 _m
- Single Scattering Albedo (SSA) varies from 0.93 (T50) to 1.0 (O99)

Epsilons for 12 Models

Solar Zenith = 0°, Sensor Zenith = 45°, Sensor Azimuth = 90°

Computations of ______, and _____, atm Reflectances

- Convert the observed 765- and 865-nm reflectances into single scattering reflectances and compute $_{-765,\,865}$ (obs, ss).
- Select two models that bracket the observe __765, 865. Also, compute __,865 (cal, ss) for both models.
- Since ___, $_{865}$ (cal, ss) =[__(cal, ss)/__865 (cal, ss)]_LUT = [__(obs, ss)/__865 (obs, ss)], compute __ (obs, ss)
- Convert __ (obs, ss) into __ obs (obs, ms) using single to multiple scattering coeff.
- Combine __ (obs, ms) from the two distributions to get the best estimate of __ atm

Surface Effects

Sun Glint

White Caps

Corrections based on statistical models (wind & geometry)

Atmospheric Correction: An Example

Green wavelength 551 nm

Total top-of-theatmosphere radiance

0-4 mW/cm² sr μ m

4.00

Green wavelength 551 nm

Total top-of-theatmosphere radiance corrected for ozone absorption and Rayleigh (gas molecule) scattering

0-4 $^{mW}\!\!/\!\!\mathrm{cm^2}\,\mathrm{sr}\,\mu\mathrm{m}$

Green wavelength 551 nm

Total top-of-theatmosphere radiance corrected for ozone absorption, Rayleigh & aerosol scattering

0-4 mW/cm² sr μ m

Green wavelength 551 nm

Normalized water-leaving radiance

0-2 mW/cm² sr μ m

Normalized: Lw is transformed to radiance normal to the surface taking into account the

Atmospheric Correction: Negative Lw's

Certain coastal regions (e.g., NE U.S. & Southern California) are problematic due to aerosol types not represented in model suite & lack of NO₂ correction.

NIR Calibration Strategy

- <u>Assume</u> 865 & 869 (SeaWiFS, MODIS) nm calibrations after temporal degradation corrections are accurate
 - Visible band vicarious calibration insensitive to NIR calibration errors < 5%
- Assume a fixed aerosol type/model for South Pacific and South Indian Ocean sites and adjust 765 & 748 nm band gains to yield "correct" aerosol radiance
 - The "M90" model (Gordon & Wang, 1994)
 - Properties similar to those inferred from the Tahiti AERONET site
 - Gain adjustment magnitude ~ 2-3% for SeaWiFS

Vicarious Calibration: Visible

- Match satellite observations with surface L_w's
- Apply atmospheric correction scheme
 - Determine aerosol properties
- Propagate L_w's to top of atmosphere to estimate a "correct" L_t
- Compute calibration gain factor as ratio of "correct" L_t / measured L_t
- Average individual gain factors to produce mission-average gain factor

Vicarious Calibration: Visible

Marine Optical Buoy:

- Deep, clear water site (Lanai, Hawaii)
- Marine atmosphere
- Relatively cloud free
- Low latitude: yearround satellite coverage at useful viewing geometries
- Glint contamination nontilting sensors

Vicarious Calibration Gain Convergence

- Only a small % of samples result in a MOBY-satellite "match-ups" for the vicarious calibration.
- For MODIS, took over 2 years to collect enough match-ups to derive gain corrections.

B. A.Franz, S. W. Bailey, P. J. Werdell, and C. R. McClain, "Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry," Appl. Opt. 46, 5068-5082 (2007)

Direct Comparison of Satellite Lwn Retrievals Global Deep-Water, 8-Day Composites, Common Bins

SeaWiFS & MODIS-Aqua

MODISA(AR011) & SeaWiFS(SR051) &—Day nLw, Deep Water Subset 2.0 SR051: solid line AR011: dashed line 1.5 0.5 0.5 Band1 Band2 Band3 Band4 Band5 2003 2003 2004 2004 2006 2006

MODIS-Aqua / SeaWiFS

SeaWiFS-MODIS/Aqua Chl-a Global Deep-Water* Means (2002-2007)

Ratio: MODIS-Aqua/SeaWiFS

MODIS-Aqua Residual RVS - Lwn(412)

SeaWiFS Bio-optical data Archive & Storage System (SeaBASS)

Data from over 1750 cruises Apparent Optical Property (AOP); Chlorophyll-a (CHL); Aerosol Optical Thickness (AOT)

Available In Situ Match-Ups by Mission

MODIS/Aqua July 2002 - Present

Roughly 10% of stations pass match-up criteria

SeaWiFS
Sept 1997 Present

SeaWiFS Lwn Comparisons with Field Data

SeaWiFS Lwn Comparisons with Field Data: Deep Water Only (> 1000 m)

Comparison of Chlorophyll Retrievals to In Situ

- Band-ratio algorithms very forgiving of radiometric biases.
- Semi-analytic reflectance inversion models very unforgiving ...<u>required</u> direction of future algorithm development.

Band Ratio (OC4) vs. Semi-analytic (GSM) Algorithms

_Chl(%)= 100*[Chl(OC4v4) – Chl(GSM)/Chl(GSM)] CDM: Colored Dissolved Matter

Semi-analytic Inversion Models: Marine Optical Properties

Marine
particle size
distribution
properties=>
phytoplankton
functional
groups, etc.

log10(particles/m⁻⁴)

Seasonal Chlorophyll Images: Comparison across Sensors

MODIS/Aqua

SeaWiFS

Ocean Reflectance: Open Ocean vs. Turbid Water

Irradiance Reflectance of the Ocean

 R^{0-} = $E_u^{(0-)}$ $/E_d^{(0-)}$

Remote Sensing Reflectance $Rrs=L_w/E_d^{(0+)}$

Sargasso Sea and Mississippi River Delta

Atmospheric Correction Methodology (cont.)

• NIR Reflectance Correction in Turbid Water

-For higher concentration of chlorophyll (above $0.7~\text{mg/m}^3$) the assumption that water-leaving radiance (L_w) in the NIR bands is zero is no longer valid. The correction is based on a bio-optical model that relates the remote sensing reflectance (Rrs) in the NIR as:

$$R_{rs}$$
 (_) = R_{rs} (_0)[a_{tot} (_0)/ a_{tot} (_)][b_b (_)/ b_b (_0)]-

where _0=670-nm, and _=765 and 865 nm

 a_{tot} (_) = a_w (_) + a_{ph} (_) + a_{dg} (_) absorption coefficients

 b_b (_) = b_{bw} (_) + b_{bp} (_) backscattering coefficients

where b_{bw} (_) = $a(S)$ ·_-4.32 and b_{bp} (_) = m/_ + c

 $R_{rs} = L_w / E_d$, where E is the surface solar irradiance.

Atmospheric Correction Methodology (cont.)

- Model does not work well in high turbidity
- Alternative for turbid water aerosol corrections: **SWIR bands**
 - $L_{\rm w}$ ~ 0 even in most turbid waters due to extremely high water absorption
 - SeaWiFS: no SWIR bands
 - MODIS: 1240, 1640, 2130 nm bands
 - Aqua: 1640 band inoperative (bad detectors)
 - Low SNRs
 - VIIRS 1240, 1610 nm bands
 - SNRs only slightly higher than MODIS

NIR SWIR

Mid Bay, ALL in situ = n: 5814, med: 8.43, mode: 7.94 color legend: in situ MODIS-Aqua

Lower Bay, ALL in situ = n: 7204, med: 6.50, mode: 6.31 color legend: in situ MODIS-Aqua

Satellite vs In Situ

Chesapeake Bay

Atmospheric Correction Issues

- Absorbing aerosols
 - Concentrations below cloud mask reflectance threshold
 - No methodology for even flagging low concentrations
- NIR calibration
 - No reliable methodology for vicarious adjustment of 865 nm, 869 nm and MODIS SWIR bands
- Turbid water aerosol corrections
- NO₂ temporal & spatial coverage
 - For SeaWiFS, requires GOME, Sciamachy, and OMI cross-calibrated data.
 - Requires significant spatial interpolation to fill gaps

Future Directions

- Current sensors (SeaWiFS, MODIS, etc.)
 - Update aerosol models
 - New model suite being tested
 - Model properties consistent with coastal/island AERONET data
 - Evaluate utilization of Calipso & Glory data in SeaWiFS & MODIS atmospheric corrections, especially for absorbing aerosols

ACE

- Absorbing aerosol identification & atmospheric corrections
 - Combination of lidar and polarimeter aerosol height & type inputs
- UV band aerosol corrections
- Use of UV bands for coastal/turbid water aerosol corrections
 - Assumes insignificant reflectance
- Coupled ocean-atmosphere RT-based aerosol corrections
 - Several models published to date.
 - Computationally too demanding for routine global processing at this time
 - Performance improvement not dramatic except in presence of absorbing aerosols

Atmospheric Correction Methodology

Aerosol Model Selection

OC processing uses NIR measurements to select aerosol model

$$_{-765, 865} = _{-765}/_{-865}$$

- Select two models that bracket the observed __765, 865
- In operational processing we use ratio of single-scattering-reflectance values to compute $__{765}$, $_{865}$

Aerosol Opt. Thickness (MODIS vs. AERONET)

Comparisons from 3 AERONET sites around Chesapeake Bay

AOT Based on Operational Models

AOT Based on New Models

865 nm

670 nm

490 nm

443 nm

AOT range: 0 - 0.7

BACKUP SLIDES

Aerosol Optical Thickness Retrievals

Similar bias found in MODIS/Aqua retrievals.

